- Find value of Cos2a+(1/1+cot2a)
- 0
- 1
- 2
- 3
- Find value of 2sin2a+4sec2a+5cot2a+2cos2a-4tan2a-5cosec2a
- 0
- 1
- 2
- 3
- Find the value of (cosA-sinA)2+(cosA+sinA)2
- 0
- 1
- 2
- 3
- Find the value of Cot2A x (sec2A-1)
- 0
- 1
- 2
- 3
- Find the value of (secA x cotA)2 – (cosec A x cosA)2
- 0
- 1
- 2
- 3
- secA/(cotA+tanA) will be equal to
- cosA
- cosecA
- sinA
- tanA
- (1+tanA+secA)(1+cotA-cosecA) will be equal to
- 0
- 1
- 2
- 3
- Cos6A+sin6A=
- 1-3(cosA x sinA)2
- 1+3(cosA x sinA)2
- 1-3(cosA x sinA)3
- 1-3(cosA x sinA)6
- (sin2A x cos2B) – (cos2A x sin2B) will be equal to
- Sin2A-cos2A
- Sin2A+cos2A
- Cos2A – cos2A
- Sin2A-Sin2B
- (tanA+cotA)(secA-cosA)(cosecA-sinA)=
- 0
- 1
- 2
- 3
- If Tan2A+Tan4A=1 then what is the value of cos2A+cos4A, given that A is an acute angle?
- 0
- 1
- 2
- 3
- (cosecA-cotA)2=
- (1-cosA)/(2+cosA)
- (1+cosA)/(1-cosA)
- (1-cosA)/(1+cosA)
- (1-cosA)x(1+cosA)
- [(tanA+secA)2-1]/[(tanA+secA)2+1], will be equal to
- tanA
- secA
- sinA
- cosA
- [(sin220+sin270)/(sec250-cos240)]+2cosec258-2(cot58xtan32)-(4tan13 x tan37 x tan45 x tan53 x tan77)
- 0
- -1
- 1
- None of above
- If cotA=root 7, what is the value of (cosec2A-sec2A)/( cosec2A+sec2A)
- 3/2
- 3/4
- 4/3
- 2/3
- (sinA+cosecA)2+(cosA+secA)2 will be equal to
- Tan2A+cot2A+4
- Tan2A-cot2A+5
- Tan2A-cot2A
- Tan2A+cot2A+7
ANSWERS:
1)b, 2)b, 3)c, 4)b, 5)b, 6)c , 7)c, 8)a, 9)d, 10)b, 11)b, 12)c,13)d, 14)b, 15)b, 16)d
LINKS
|| Basics Of Trigonometry||
0 comments:
Post a Comment